http://www.magnet.fsu.edu/education/teachers/resources/supernet/index.html

• An educational network connecting scientists and teachers
• Explore the *emergent universe* through inquiry-based activities.

Mentoring & Outreach

• Teachers work alongside leading scientists throughout the year.
• From cutting-edge research to the classrooms
• Continuing professional teacher development

SuperNet is an educational outreach project of the Institute for Complex Adaptive Matter (ICAM), with its home at the National High Magnetic Field Laboratory at Florida State University
Materials Development

Development of materials for teaching high school students through participation in inquiry-oriented investigations and web-based data analysis through on-going teacher professional development.

Topics

• Initially: from superconductivity, electricity and magnetism,...

• Later: depth in sets of topics within condensed matter physics
 FT-ICR for proteomics
 Probe currents for T_C of “new” materials

• Long term: topics relating to emergent behavior in matter and society.

Nb$_3$Sn filaments in Cu
Modules for Teachers

A main focus of SuperNet is the development of modules created through collaboration among faculty at partners institutions, teachers and students.

Current and planned modules include:

- Superconductivity web-based Treasure Hunt
- Meissner Effect demonstration, Expanded Script @ July 07 AAPT
- Thermal energy, temperature, and heat transfer
- Phase transitions: phenomena at temp. “scalings”
- Structure: From carbon to carbon nanotubes
- Conductivity of materials: metals, insulators, superconductors
- Quantum mechanics: 2 slit experiments to qubits; tunneling
- Application of FT-ICR proteomics in biology classes
- Web-based data sets to explore TC with probe currents

Superconductivity – an example of emergent behavior – can be explained by demonstrating the Meissner Effect.
Why SC? Why This Demo?

Peering into the body without cutting it open

Traveling hundreds of miles per hour in a levitated train

Steering antimatter moving at the speed of light

Expansions/Extensions
Teacher Workshops

• **MagLab Workshop I**: Held January 30, 2007
• **MagLab Workshop II**: Held May 1, 2007
• **MagLab Workshop III**: TBA, January 23, 2008
• These workshops have drawn fifteen teachers from nine area middle schools and high schools.

• **Presentations by Magnet Lab Scientists** (can be downloaded from the SuperNet Web page)

 - **Metals, Magnetic Fields and Superconductors**, Nick Bonesteel
 - **Superconductivity: From Physics to the Applications**, David Larbalestier
 - **The Science of High Magnetic Fields**, Chris Wiebe
 - **Electricity and Magnetism, from Early History to the Latest Research** Greg Boebinger
Pilot Phase: Principal Participants

Florida State University (Magnet Lab: “The Hub”)

- Vladimir Dobrosavljevic – Scientist
- Pat Dixon – Outreach (NHMFL/CIRL)
- Brian McClain – Lead Teacher
- Nick Bonesteel – Scientist
- Chris Wiebe – Scientist
- Irinel Chiorescu – Scientist
- Greg Boebinger – Guest Speaker

FermiLab and Illinois

- Marge Bardeen - Outreach
- Jeff Rylander – Lead Teacher
- Phil Sumida – Lead Teacher
- James Carrubba – Teaching Assistant

Ohio State University

- Nandini Trivedi – Scientist
- Mindy Wright – Outreach Lead Teacher
- Andrew Heckler – Scientist
- Tom Lemberger – Scientist
- Bruce Patton – Scientist

A teacher searches for a kernel of truth in his project on irradiated popcorn.

What floats your squash? Teachers examine the mysteries of mass, density and veggies.
SuperNet Management Vision:

Inspired by QuarkNet

Management Chart

Advisory Group — 5 PIs — 5 Staff Teachers — Outside Evaluators

- Center 1
- Center 2
- Center 3
- Typical Center
- Center 49
- Center 50
- Center 51

Mentors — Teacher-Leaders

Teachers
Thank You 😊

If you would like to discuss and maybe “sponsor” a SuperNet node at your institution, you can:

• See me, Brian McClain; or
• Check the Education link of the NHMFL; or
• Email vlad@magnet.fsu.edu
• Google us at: supernet superconductivity