Application of BCS-like Ideas to Superfluid 3-He

Tony Leggett

University of Illinois at Urbana-Champaign
Electrons in Metals (BCS):
Fermions of spin $\frac{1}{2}$, $T_F \sim 10^4 K$, $T_c \sim 10 K$
⇒ strongly degenerate at onset of superconductivity
Normal state: in principle described by Landau Fermi-liquid theory, but “Fermi-liquid” effects often small and generally very difficult to see.

BCS: model normal state as
Weakly interacting gas with weak “fixed”
 attractive interaction

Liquid 3He:
also fermions of spin $\frac{1}{2}$, $T_F \sim 1K$, $T_c \sim 10^{-3} K$
⇒ again, strongly degenerate at onset of superfluidity
Normal state: must be described by Landau Fermi-liquid theory, Fermi-Liquids effects very strong. (e.g. Wilson ratio ~ 4)
⇒ low-lying states (inc. effects of pairing) must be described in terms of Landau quasiparticles.

What is Common:
2-particle density matrix has single macroscopic ($\sim N$) eigenvalue, with associated eigenfunction

$$ F(r_1 r_2 \sigma_1 \sigma_2) \equiv F(R : r \sigma_1 \sigma_2) $$

“wave function of Cooper pairs”
(for r, σ_1, σ_2 fixed: GL “macroscopic wave function $\Psi(R)$)
STRUCTURE OF COOPER-PAIR WAVE FUNCTION

(in original BCS theory of superconductivity, for fixed $\mathbf{R}, \sigma_1, \sigma_2$)

$$F(\mathbf{r}) = F(r) = \Delta \sum_k (2E_k)^{-1} \exp \left(i \mathbf{k} \cdot \mathbf{r} \right) \left(\epsilon_k^2 + |\Delta|^2 \right)^{1/2}$$

Energy gap

$$\cong \text{const.} \left(N\Delta / E_F \Omega^{1/2} \right) \frac{\sin \frac{k_FR}{r}}{\frac{k_FR}{r}} \exp \left(-\frac{r}{\xi} \right)$$

$$\xi = \text{"pair radius"} \sim \hbar \nu_F / \Delta \left(\sim 10^4 \text{Å} \right)$$

"Number of Cooper pairs" $(N_0) = \text{norm}^n$ of $F(r)$

$$\equiv \int |F(\mathbf{r})|^2 \, d\mathbf{r} \sim \frac{N^2}{\Omega} \frac{\Lambda^2}{E_F^2} \frac{1}{k_F^2} \xi \sim N \left(\frac{\Delta}{E_F} \right) \sim 10^{-4} N$$

(cf: $N_0 / N \sim 10\%$ in ^4He)

In original BCS theory of superconductivity,

$$F(\mathbf{r} : \sigma_1 \sigma_2) = \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2 \right) F(|\mathbf{r}|)$$

spin singlet orbital s-wave

\RightarrowPAIRS HAVE NO "ORIENTATIONAL" DEGREES OF FREEDOM

$(\Rightarrow$stability of supercurrents, etc.)
THE FIRST ANISOTROPIC COOPER-PAIRED SYSTEM: SUPERFLUID 3He

2-PARTICLE DENSITY MATRIX ρ_2 still has one and only one macroscopic eigenvalue
\Rightarrow can still define “pair wave function” $F(R,r;\sigma_1\sigma_2)$

However, even when $F \neq F(R)$,

$F(r;\sigma_1\sigma_2)$ HAS ORIENTATIONAL DEGREES OF FREEDOM!
(i.e. depends nontrivially on $\hat{r},\sigma_1\sigma_2$)

All three superfluid phases have $\ell = S = 1$

A phase ("ABM")

Spin triplet

$F(r;\sigma_1\sigma_2) = \frac{1}{\sqrt{2}}(\uparrow \downarrow_x + \downarrow \uparrow_2) \times f(r)$

\Rightarrow char. "spin axis"

Properties anisotropic in orbital and spin space separately,

e.g. $|\Delta_k| = |\Delta(\hat{k})| = \Delta_n |\hat{k} \times \hat{\ell}| \Leftarrow$ nodes at $\pm \hat{\ell}$!

WHAT IS TOTAL ANG. MOMENTUM? $\left\{ \frac{N}{N} \frac{\Delta / E_f}{\Delta / E_f^2} \right\}$?
B phase ("BW")

For any particular direction \hat{n} (in real or k-space) can always choose spin axis s.t.

$$F(\hat{n} : \sigma_i \sigma_j) \sim \frac{1}{\sqrt{2}} \left(\uparrow_i \downarrow_j + \downarrow_i \uparrow_j \right) \hat{d}$$

i.e. $\hat{d} = \hat{d}(\hat{n})$. Alternative description:

BW phase is 3P_0 state “spin-orbit rotated” by 104°.

$L = S = J = 0$ because of dipole force $\cos^{-1}(-1/4) = \theta_0$

Note: rotation (around axis $\hat{\omega}$) breaks P but not T

Orbital and spin behavior individually isotropic, but: properties involving spin-orbit correlations anisotropic!

Example: NMR

$$\frac{dS}{dt} = S \times H_O + \frac{\delta E_D}{\delta \theta}$$

\angle of rotation about rf field direction $\hat{\mathcal{H}}_{rf}$

In transverse resonance, rotation around $\hat{\mathcal{H}}_{rf}$ equiv. rotation of $\hat{\omega}$ with θ_0 unchanged

\Rightarrow No dipole torque.

In longitudinal resonance, rotation changes θ_0

\Rightarrow finite-frequency resonance!
RESOLUTION OF THE PARADOX OF TWO NEW PHASES.

In BCS (weak-coupling) theory for $\ell = 1$, BW phase is always stable, independently of pressure and temperature.

Crucial difference between Cooper pairing in superconductors and ^3He:

Superconductor:

![Diagram of superconductor pairing process]

liquid ^3He:

![Diagram of ^3He pairing process]

\Rightarrow “feedback” effects: Over most of the phase diagram, BW state stable as in BCS theory. But at high temperature and pressure, feedback effects uniquely favor ABM phase.
“Exotic” Properties of Superfluid 3He

A. Orientation const. in space, varying in time:
 — spin dynamics (NMR)
 — orbital dynamics (“normal locking”) (A phase)
 — effect of macroscopic ang. momentum? (A phase)

B. Orientation const. in time, varying in space
 — spin textures (3He-A) ($\hat{d} = \pm \hat{l}$) in equation
 \[
 \hat{\mathbf{d}} \uparrow \\
 \hat{\mathbf{\ell}} \uparrow \\
 \text{(carries spin current)}
 \]
 — orbital textures
 — topological singularities (boojums, “half-quantum” vortices.
 — instability of supercurrents in 3He-A.

C. Orientation varying in both space and time
 — spin waves
 — orbital waves
 — “flapping” and “clapping” modes

D. Amplification of ultra-weak effects
SPONTANEOUSLY BROKEN SPIN-ORBIT SYMMETRY

Ferromagnetic analogy:

FERROMAGNET

\[\hat{H} = \hat{H}_0 + \hat{H}_z \]

\[\uparrow \]

invariant under simult. rotation of all spins

\[\hat{H}_z = - \mu_B \mathcal{H} \sum_i S_{zi} \]

breaks spin-rot. symmetry

Exlt. field

Paramagnetic phase (T > T_c):
spins behave independently,
kT competes with \(\mu_B \mathcal{H} \) \(\Rightarrow \)
polarization \(\sim \mu_B \mathcal{H} / kT \ll 1 \) \(\Rightarrow \)
\[<H_z> \sim N(\mu_B \mathcal{H})^2 / kT \]

Ferromagnetic phase (T < T_c):
\(\hat{H}_0 \) forces all spins to lie parallel
\(\Rightarrow k_B T \) competes with \(N \mu_B \mathcal{H} \)
\(\Rightarrow <S_z> \sim 1 \) \(\Rightarrow <H_z> \sim N \mu_B \mathcal{H} \)

LIQUID ^3 HE

\[\hat{H} = \hat{H}_0 + \hat{H}_D \]

\[\uparrow \]

invariant under relative rotation of spin + orbital coordinate systems

\[\equiv \mu_n \mathcal{H}_n / r_0 \]

\[\hat{H}_D = g_D \sum_{ij} \left(\mathbf{\sigma}_i \cdot \mathbf{\sigma}_j - \frac{3}{2} \mathbf{\sigma}_i \cdot \mathbf{L}_{ij} \mathbf{\sigma}_j \cdot \mathbf{L}_{ij} \right) \]

\[\left(\frac{3}{r_{ij}^3} \frac{3}{r_0^3} \right) \]

breaks relative spin-orbit rot. symmetry

Normal phase (T > T_A):
pairs of spins behave independently \(\Rightarrow \)
polarization \(\sim g_D / kT \ll 1 \) \(\Rightarrow \)
\[<H_D> \sim N g_D ^2 / kT \]

Ordered phase (T < T_A):
\(\hat{H}_0 \) forces all pairs to behave similarly \(\Rightarrow \)
kT competes with \(N g_D \)
\[\Rightarrow <H_D> \sim N g_D ^5 \sim 10^{-3} \text{ ergs/cm}^3 ! \]
SBSOS: ORDERING MAY BE SUBTLE

FERROMAGNET

\[\downarrow \]

\[\uparrow \uparrow \uparrow \uparrow \uparrow \]

\[\downarrow \]

\[\uparrow \uparrow \uparrow \uparrow \uparrow \]

\[\leftarrow \text{NORMAL PHASE} \rightarrow \]

\[\leftarrow \text{ORDERED PHASE} \rightarrow \]

LIQUID 3HE

\[\uparrow \uparrow \uparrow \uparrow \]

\[\uparrow \downarrow \downarrow \downarrow \]

\[\downarrow \uparrow \uparrow \uparrow \uparrow \]

\[\downarrow \uparrow \uparrow \uparrow \uparrow \]

\[\leftarrow \text{NORMAL PHASE} \rightarrow \]

\[\leftarrow \text{ORDERED PHASE} \rightarrow \]

\(\langle S \rangle \neq 0 \)

(\(\uparrow \) = total spin of pair
\(\downarrow \) = relative orbital ang. momentum)

\(\langle S \rangle = \langle L \rangle = 0 \)

but \(\langle L \times S \rangle \neq 0! \)
Amplification of ultra-weak effects (cf NMR):
Example: P- (but not T-) violating effects of neutral current part of weak interaction:
For single elementary particle, any EDM \(d \) must be of form
\[
\hat{d} = \text{const. } \mathcal{J} \leftarrow \text{violates T as well as P.}
\]
But for \(^3\text{He} - \text{B}\), can form
\[
d \sim \text{const. } \mathcal{L} \times \mathcal{S} \sim \text{const. } \hat{\Theta}
\]
violates P but not T.

Effect is tiny for single pair, but since all pairs have same value of \(\mathcal{L} \times \mathcal{S} \), is multiplied by factor of \(\sim 10^{23} \) ⇒

macroscopic P-violating effect?