NMR of Correlated Electron Superconductors

Jürgen Haase

University of Leipzig
Content

• Introductory remarks
 • NMR, classical superconductors, spin shift and relaxation

• NMR of the cuprates

• Spin shifts and the single-component picture

• With new NMR data we demonstrate:
 • the failure of the single-component picture
 • the new hyperfine scenario
 • the three susceptibilities from NMR

• Conclusions
Nuclear Spin Levels

NMR:
Induce transitions among the nuclear levels and measure the splitting and life-time.

\[\omega_n = \gamma_n B_z \]

The chemical and electronic properties of the material influence the NMR parameters.

NMR is a bulk probe with atomic scale resolution.
Classical Superconductors

^{27}Al spin shift and relaxation in Al-metal above and below T_c

$K_S(T)/K_S(0)$ vs T/T_c

The disappearance of the spin shift and $1/T_1T$ below T_c are predicted by BCS theory for $S=0$ Cooper pairs (above T_c Pauli susceptibility and Heitler-Teller relaxation).

NMR is a useful tool for studying superconductivity.
Cuprate Superconductors

Special circumstances:

- They are type II superconductors (partial diamagnetism below T_c influences shift).
- We can investigate various nuclei (Cu, O, La, Y, Hg, ...).
- Most nuclei possess an electric quadrupole moment, so we have a competing interaction and various resonance lines.
- Inhomogeneities can cause substantial line broadening and overlapping lines.

Measurements can be very difficult.
NMR Spin Shift and Electronic Spin Susceptibility

\[H = \mathbf{I} \cdot A_n \cdot \mathbf{S} \quad \text{spin hyperfine term} \]

\[H_n = A_n I_z \langle S_z \rangle \]

\[H_n = \gamma_n \hbar I_z B_z \frac{A_n}{\gamma_n \gamma_e \hbar^2} \chi_S \]

\[H_{\text{total}} = \gamma_n \hbar I_z \left(1 + \frac{A_n}{\gamma_n \gamma_e \hbar^2} \chi_S \right) B_z \]

\[\frac{\Delta \omega_n}{\omega_{n,0}} = K_{S,n} = \frac{A_n}{\gamma_n \gamma_e \hbar^2} \chi_S \]

NMR measures locally the electronic spin susceptibility.
If we compare the spin shift K_S at different nuclear sites (1 and 2) they must be proportional to each other:

$$K_{S,1} = \frac{A_1}{\gamma_1 \gamma_e \hbar^2} \chi_S$$

$$K_{S,2} = \frac{A_2}{\gamma_2 \gamma_e \hbar^2} \chi_S$$

This proportionality is a critical test for single component behavior.
Early NMR: Discovery of Spin-Gap

Alloul, Ohno, and Mendels, PRL 63, 1700 (1989)

The spin shift is temperature-dependent above T_c.

The spin shift is temperature-dependent above T_c.

ΔK (ppm) vs. T (°K) for different doping levels x. The plot shows the NMR shift for various doping concentrations, with $x = 1.0$ being the highest. The shift is seen to increase with decreasing temperature and is more pronounced at lower doping levels.
Early ^{17}O and ^{63}Cu Shift Results on YBa$_2$Cu$_3$O$_{6.63}$

Cu and O electronic spins seem to form a single component.

The single-fluid picture has dominated our view of the cuprates.

Los Alamos National Laboratory, Los Alamos, New Mexico 87544
(Received 30 April 1990)
Conflicting Evidence from NMR

- Pines et al. had to assume a revised hyperfine scenario to fit NMR data.
- Walstedt 1994 could not explain NMR relaxation in a single-component picture.
- We could not fit NMR linewidths data for LaSrCuO with the hitherto used hyperfine scenario (Haase et al. 2002).
- We found a break in the planar Cu vs. planar O spin shifts for LaSrCuO but did not know the Meissner contribution.

Related:
- Johnston (1989) and Nakano et al. (1994) found two uniform susceptibilities.

We set out to acquire a new set of data on La$_{1.85}$Sr$_{0.15}$CuO$_4$.
The shifts at three nuclei in La$_{1.85}$Sr$_{0.15}$CuO$_4$

\[K = K_{\text{Core Diamagn}} + K_L + K_Q + K_{\text{Meissner}}(T) + K_{S}(T) \]

T-independent

\[K_{\text{Meissner}}(T) = \frac{\Delta B}{B} = \frac{\gamma_n \Delta B}{\gamma_n B} \] independent on γ_n

1. Measure all possible shifts (field parallel and perpendicular to crystal c-axis) at all temperatures.

2. This set of shifts allows us to remove the uncertainty from the Meissner effect and perform a complete

3. Test for single-component behavior.
1. \(\text{La}_{1.75}\text{Sr}_{0.15}\text{CuO}_4 \) Shifts vs. Temperature

- **Apical Oxygen** \(c \perp B \)
- **Apical Oxygen** \(c \parallel B \)
- **Planar Oxygen** \(c \parallel B \)
- **Copper** \(c \perp B \)

Here are the shifts.
2. Remove any Meissner Shielding

We allow for an anisotropic Meissner shielding by taking the appropriate differences:

\[F_{\perp} = 63 K_s(T) - 17A K_s(T) \]
with \(c \perp B_0 \)

\[F_{\parallel} = 17P K_s(T) - 17A K_s(T) \]
with \(c \parallel B_0 \)

Both quantities are obviously not proportional to each other:
3. The Test for Single-Component Behavior

This is not single-component behavior. We have to resort to a two-component scenario.

Based entirely on experimental data.

\[F_\perp (\%) \not= \frac{\perp}{\parallel} F \parallel \]
Spin Shifts for Two Components

\[K_k = a_k \cdot \chi_a (T) + b_k \cdot \chi_b (T) \]

Two electronic spins act on each nucleus.

- \(K_k \) spin shift for particular nucleus and orientation
- \(\chi_a, \chi_b \) two susceptibilities
- \(a_k, b_k \) hyperfine coefficients for particular nucleus and orientation

Note that we expect:

\[\chi_a = \chi_{AA} + \chi_{AB} \]
\[\chi_b = \chi_{BB} + \chi_{AB} \]

With the uniform spin susceptibility

\[\chi_0 = \chi_a + \chi_b = \chi_{AA} + 2\chi_{AB} + \chi_{BB} \]
Experimental Observation

Apical oxygen c\perp B

Apical oxygen c\parallel B

Planar oxygen c\parallel B

Copper c\perp B

Planar oxygen c\perp B

Copper c\parallel B

Apical oxygen c\parallel B

Apical oxygen c\perp B

Planar oxygen c\parallel B

Apical oxygen c\parallel B

Planar oxygen c\perp B
Every shifts is a linear function of any other shift \((y = m x + n)\) at higher temperatures \((T > T_c)\).
Conclusion from the shift-shift plots

Shift k: \[K_k = a_k \cdot \chi_a(T) + b_k \cdot \chi_b(T) \]

Shift l: \[K_l = a_l \cdot \chi_a(T) + b_l \cdot \chi_b(T) \]

substitute \(\chi_a(T) \)

\[K_k(T) = \frac{a_k}{a_l} K_l(T) + \left\{ b_k - \frac{a_k}{a_l} b_l \right\} \chi_b(T) \]

\[\chi_b(\overline{T}) = \chi_{AB} + \chi_{BB} \quad \text{not a function of } T \text{ for } T>T_c \]

Two susceptibilities \(\chi_{AB}, \chi_{BB} \) must be temperature independent above \(T_c \). The temperature dependence can only be in \(\chi_{AA} \).
Determining the Unknowns

\[K_k(T) = \frac{a_k}{a_l} K_l(T) + \left\{ b_k - \frac{a_k}{a_l} b_l \right\} \chi_b \]

These two numbers can be read off the plots for \(T > T_c \).

We can solve for \(b_k \chi_b \) and thus calculate

\[a_k \cdot \chi_a(T) = K_k(T) - b_k \cdot \chi_b. \]

We note that we can determine a universal function for \(T > T_c \):

\[\frac{\chi_a(T)}{\chi_a(300K)} = \frac{K_k(T) - b_k \cdot \chi_b}{K_k(300K) - b_k \cdot \chi_b} \]
1. All shifts show the universal scaling down to T_c: $\frac{\chi_a(T)}{\chi_a(300K)}$.
2. Near T_c this expression is strongly negative (is χ_{AB} negative?).
D.C. Johnston (1989) and later Nakano et al. (1994) showed that the uniform susceptibility (for LaSrCuO) could be decomposed into two contributions (for all doping levels):

$$\chi(T, x) = \chi_1(T, x) + \chi_2(x)$$

Since we can only have χ_{AA} as temperature-dependent susceptibility we must conclude that $\chi_{AA}(T) = \chi_1(T)$.
Determination of χ_{AB}

\[\frac{\chi_a(T)}{\chi_a(300K)} = \frac{\chi_{AA}(T) + \chi_{AB}}{\chi_{AA}(300K) + \chi_{AB}} = \frac{\chi_1(T) + \chi_{AB}}{\chi_1(300K) + \chi_{AB}} \]

Temperature (K)

Use Johnston’s universal function

We can calculate χ_{AB}.
Above T_c we find the following numbers:

\[
\chi_{AA}(T) = \chi_1(T) \quad \chi_1(300K) = 6.8 \text{ emu / mol}
\]

\[
\chi_{BB} = 18.7 \text{ emu / mol}
\]

\[
\chi_{AB} = -4.2 \text{ emu / mol} \quad \text{(negative!)}
\]

With these values we can now determine the hyperfine coefficients.
Hyperfine Coefficients $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$

| | $\text{Cu} \ c \perp B$ | planar O c || B | apical O c $\perp B$ | apical O c || B |
|--------|--------------------------|------------------|----------------------|------------------|
| χ_a | 2.6 | 8.7 | 0.79 | 0.24 |
| | 14.3 | 48.0 | 4.4 | 1.3 |
| χ_b | 21.4 | 4.6 | 1.2 | 0.38 |
| | 120 | 26 | 6.9 | 2.1 |

These are the coefficients that describe the coupling of each nucleus to the two electronic spin components (for two orientations).
Susceptibilities vs. Temperature

\[\chi = \chi_{dd} + \chi_{pp} + \chi_{pd} \]

\[\chi_{AA} = \chi_{dd} \] (copper d-contribution)
\[\chi_{BB} = \chi_{pp} \] (oxygen p_\sigma -contribution)
\[\chi_{AB} = \chi_{pd} \] (correlation d,p_\sigma)

These temperature-dependencies follow from
the NMR spin shift data!
Conclusions

- A single-component picture is not appropriate for the description of all cuprate superconductors.

- The spin shifts suggest a two-component scenario:
 - $\chi_{AA}(T)$ is temperature-dependent already above T_c (pseudogap)
 - $\chi_{BB}(T>T_c)>0$ and temperature-independent
 - $\chi_{AB}(T>T_c)<0$ and temperature-independent
 - below T_c all susceptibilities decrease to zero
 - each nucleus couples to two electronic spin components with the hyperfine couplings presented.
Acknowledgement

Charlie Slichter (still a hot collaboration)
David Pines (many enlightening discussions)
G.V.M. Williams, Wellington NZ (many samples)
N. Curro, J. Schmalian (two-component description in 115-materials)
V. Barzikin, D. Pines (sharing their thoughts about the cuprates with us)