Eight International Conference on the
Bearing Capacity of Roads, Railways and Airfields

The University of Illinois at Urbana-Champaign
June 29-July 2, 2009, Champaign, Illinois, USA

Edited by Erol Tutumluer and Imad L. Al-Qadi
PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THE
BEARING CAPACITY OF ROADS, RAILWAYS AND AIRFIELDS,
JUNE 29-JULY 2, 2009, CHAMPAIGN, ILLINOIS, USA

Bearing Capacity of Roads,
Railways and Airfields
(BCR²A ’09)

Edited by
Erol Tutumluer and Imad L. Al-Qadi
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

VOLUME __

Taylor & Francis
Taylor & Francis Group
LONDON / LEIDEN / NEW YORK / PHILADELPHIA / SINGAPORE
Table of Contents

Preface
E. Tutumluer & I.L. Al-Qadi

Organization

VOLUME

Keynote Presentations

From bearing capacity to mechanistic design: the role of soil mechanics in asphalt pavement engineering
S.F. Brown

The performance of rail track incorporating the effects of ballast breakage, confining pressure and geosynthetic reinforcement
B. Indraratna, S. Nimbalkar & D. Christie

Airport pavement design for the 21st century
S. Agrawal

Subgrade Soils

87_ Improving subgrade strength and pavement performance by chemical treating subgrade soils
N. Bandara & M.J. Grazioli

105_Study of dry sludge stabilization from water treatment plant (WTP) in Taiaçupeba to use as compacted soil in earthwork ditches

118_Alternatives to heavy test rolling for cohesive subgrade assessment

123_A comparative subgrade evaluation using CBR, vane shear, light weight deflectometer, and resilient modulus tests
N. Garg, A. Larkin & H. Brar
128 Stabilization of clays using liquid enzymes
Y. Yilmaz, A.G. Gungor & C. Avsar

158 _The effect of moisture hysteresis on resilient modulus of subgrade soils
C. Khoury & N. Khoury

159 Dynamic properties of a full weathering granite subgrade and other pavement materials studied by model tests
J. Zou, Z. Li & X. Cao

184 _The use of geofiber and synthetic fluid for stabilizing marginal soils
K. Hazirbaba & B. Connor

195 Subgrade modification - practitioner’s experience
T. McCleary

205 “Baku Bayil Yard Site” soil improvement geotechnical works
E. Guler, A. Gure & E. Cetin

243 _Resilient characteristics of bottom ash
H.H. Titi, A.R. Coenen & M.B. Elias

244 Precision triaxial equipment for the evaluation of the elastic behavior of soils
N. Araújo & A. Gomes Correia

Granular Materials

98 A performance study of different curing materials applied to soil-Portland cement base course cure
R.M. Fortes & J.V. Merighi

111 Pavement base unbound granular materials gradation optimization
J.P. Bilodeau, G. Doré & P. Pierre

121 Influence of the macroscopic cohesion on the 3D FE modeling of a flexible pavement rut depth
F. Allou, C. Petit, C. Chazallon, & P. Hornych

188 Effect of grading and moisture on the deformation properties of unbound granular aggregates
L.U. Mathisen
194_IDOT test loop: evaluating the field performance of various dense graded aggregates
G. Heckel

206_Analytical evaluation of unbound granular layers in regard to permanent deformation
L.A.T. Brito, A.R. Dawson & P.J. Kolisoja

214_Processed Portuguese steel slag – a new geomaterial
A. Gomes Correia, S.M. Reis Ferreira, A.J. Roque & A. Cavalheiro

231_Resilient modulus of hydraulically bound road base materials with high volume waste dust
H. Al Nageim & P. Visulios

232_Characterizing natural and recycled granular materials for (sub)base layers of roads by cyclic triaxial testing
C. Grégoire, B. Dethy, J. Detry & A. Gomes Correia

233_Resilient modulus of unbound base material containing extra waste Stancombe limestone dust
B. Saghafi & H. Al Nageim

262_Characterizing aggregate permanent deformation behavior based on types and amounts of fines
D. Mishra, E. Tutumluer, J. Kern & A. Butt

Asphalt Mixtures

63_Use of polymer modified binders to reduce rutting in Nordic asphalt pavements
B.O. Lerfald, J. Aurstad & N.S. Uthus

76_Contribution of asphalt mix components to permanent deformation resistance
P.M. Muraya, A.A.A. Molenaar & M.F.C. van de Ven

93_A new rutting evaluation indicator for asphalt mixtures
K. Su, L. Sun, Y. Hachiya & R. Maekawa

102_Evaluation of different predictive dynamic modulus models of asphalt mixtures used in Argentina
F.O. Martínez & S.M. Angelone
129_ Development of wear resistant pavements using polymer modified binders
R.G. Saba, L.J. Bakløkk, J. Aksnes & B.O. Lerfald

164_ Permanent deformation evaluation of Idaho Superpave mixes using the gyratory stability
F. Bayomy, A.A. Abdo & M.J. Santi

165_Prediction of the dynamic modulus of Superpave mixes
A.A. Abdo, F. Bayomy, R. Nielsen, T. Weaver, S.J. Jung & M.J. Santi

168_Laboratory evaluation of warm mix asphalt using Sasobit®
S.W. Goh, Y. Liu & Z. You

169_Dynamic modulus prediction of asphalt concrete using three tensile tests
S. Adhikari & Z. You

171_Assessing low temperature properties of asphalt materials by means of static testing techniques
M. Wistuba, K. Mollenhauer & K. Metzker

172_Ageing of stone mastic asphalt and evaluation of cracking resistance
S. Büchler, K. Mollenhauer, M. Wistuba & P. Renken

174_Fatigue resistance of hot mix asphalt at low temperatures - Is there a way to reduce the test efforts?
K. Mollenhauer & M. Wistuba

202_Hot mix asphalt produced from marble waste
C. Gurer, H. Akbulut & A. Yıldız

229_Discrete element analysis of aggregate variability, blending, and fracture in asphalt mixture
E. Masad, E. Mahmoud & S. Nazarian

239_Multidirectional behavior of bituminous mixture
P. Clec’h, C. Sauzèat & H. Di Benedetto

241_Design of pavements containing foamed bitumen recycled layers
M. Losa, R. Bacci, A. Terrosi Axerio & P. Leandri

242_Long-term study on asphalt mixture segregation in Connecticut: preliminary results on use of MTV
D.J. Nener-Plante & A. Zofka
In-Situ Measurement Techniques and Developments

72. Development of the UK highways agency traffic speed deflectometer
 B. Ferne, P. Langdale, N. Round & R. Fairclough

85. Implementation of a network-level falling weight deflectometer survey of Virginia’s interstate system
 B.K. Diefenderfer, T. Chowdhury & R.A. Shekharan

95. Application of FBG strain sensors in the measurement of three-directional strains within asphalt pavement
 D. Zejiao, T. Yiqiu, C. Fengchen & L. Hao

148. 3D visualization model of road surface
 X. Li, S. Ma & X. Hou

151. Three years of high speed deflectograph measurements of the Danish state road network
 S. Baltzer

167. A method for benefiting pavement quality assurance measures related to roughness condition surveys
 C. Plati & A. Loizos

216. Structural roadway assessment with frequency response function
 J.-M. Simonin & D. Lièvre & J.-C. Dargenton

217. Deflection measurement: the need of a continuous and full view approach

Modeling & Methods of Functional Testing

7. Laboratory characterization of half-warm mix asphalts with high recycling rate by means of the factorial experiment design approach
 F. Olard, E. Beduneau, D. Bonneau, S. Dupriet & N. Seignez

13. Viability of the use of construction and demolition debris in hot mix asphalt
 I. Pérez, M. Toledano & J. Gallego

18. Thermal stresses of asphalt pavement with temperature-dependent modulus of elasticity
Y. Zhong & L. Geng

30. Rigid pavement reinforcement: modeling of structural behavior
P. Domingos, M. Antunes & J. Neves

64. Development and testing of low noise pavements in Norway
J. Aksnes, R.G. Saba & T. Berge

66. Roughness progression models by regression and artificial neural network techniques
E. Taddesse & H. Mork

78. Joint modeling for JPCP: successes and pending problems
E. Guo

133. Mechanistic modeling of potential interlayer slip at base sub-base level
E. Horak, J.W. Maina, S.E. Emery & B. Walker

135. PFC2D simulation research on vibrating compaction test of soil and rock aggregate mixture
X. Jia, H. Chai, Z. Yan & Y. Zheng

137. Axi-symmetric analyses of vertically inhomogeneous elastic multilayered systems
J.W. Maina, Y. Ozawa & K. Matsui

154. Models to estimate k subgrade reaction modulus values based on deflection basin parameters

181. Application of gray theory in settlement forecast of rock-fill highway embankment
X. Wang, W. Qin, M.C. Wang & Z. Wang

200. FEM analysis of the bearing plate deflection tests on rubblized concrete pavement
Y. Liu, Y. Sheng, & L. Wang

210. Data mining applied to compaction of geomaterials
R. Marques, A. Gomes Correia & P. Cortez

253. Finite element analyses of pavement materials at or near failure: a constant bulk modulus approach
C. Gonzalez & S. Jersey

266. Use of 3-dimensional discrete element model to examine
aggregate layer particle movement due to load wander
P.R. Donovan, E. Tutumluer & H. Huang

Backcalculation Analyses of Deflection Measurements

35_Backcalculation of the stiffnesses of cement treated base courses using artificial intelligence
M. Miradi & A.A.A. Molenaar, M.F.C. van de Ven & S. Molenaar

82_Bearing capacity assessment of recycled asphalt pavements
V. Papavasiliou & A. Loizos

138_Dynamic analyses of non-destructive tests
W.T. van Bijsterveld & R.L. Álvarez Loranca

245_Automated pavement thickness evaluation for FWD backcalculation
K.R. Maser, L.A. McGrath, B.C. Miller, H. Ceylan & G. Sanati

251_Analysis of FWD data and characterization of airfield pavement materials in New Mexico
M.U. Ahmed, R. Bisht & R.A. Tarefder

255_SOFTSYS for backcalculation of full-depth asphalt pavement layer moduli
O. Pekcan, E. Tutumluer & J. Ghaboussi

261_Deterministic-empirical backcalculation of LWD deflection basins
R.N. Stubstad, H.C. Korsgaard, K. Olsen, & J.P. Pedersen

New and/or Innovative Techniques in Compaction & Construction

8_Long-term in-situ measurements of concrete culverts with high fills
J. Vaslestad, G.Y. Yesuf & T.H. Johansen

27_Research and applications of new pavement structure based on large stone porous asphalt mixture
B. Yufeng, W. Songgen & G. Huber

53_Fiber-reinforced concrete pavement design and material requirements
A. Bordelon & J. Roesler

65_Using falling weight deflectometer data for new construction interactive design
C.A. Lenngren

145_Appraisal of density-based field compaction control test validity
J. Sadrekarimi & S. Seyyedi

175_Continuous compaction control: Preliminary data from
a Delaware case study
F.S. Tehrani & C.L. Meehan

218_Geostatistical analysis of roller-integrated continuous
compaction control data
N. Facas, M. Mooney & R. Furrer

Structural Evaluation & Performance Prediction

1_Evaluation of effectiveness of FWD use for assessment of pavement
interlayer bond
D. Sybilski, T. Mechowski & P. Harasim

9_The use of impact-stiffness modulus outputs from FWD measurements to
determine PCN in Israel
M. Livneh

12_Temperature correction of falling weight deflectometer measurements
E. Straube & D. Jansen

28_Nature resources and functional road design criteria
C.A. Lenngren & R. Fredriksson

29_Lightweight deflectometers for quality assurance in road construction
P.R Fleming, M.W. Frost & J.P. Lambert

50_The use of surfacing service life as a parameter in pavement
strengthening design
G. Refsdal, R. Johansen & G. Berntsen

61_Going beyond elastic response while evaluating falling weight
deflectometer data
C.A. Lenngren

69_Pavement contribution to truck rolling resistance
C.A. Lenngren

71_Structural assessment of the English strategic road network –
latest developments
Practical use of light weight deflectometer for pavement design
B. Ferne, R. Sinhal & R. Fairclough

Structural evaluation of rubblized concrete pavements in Iowa
S. Baltzer, C. Hejlesen, H.C. Korsgaard & P.E. Jakobsen

Structural Evaluation of Full-Depth Reclamation in Virginia
H. Ceylan, K. Gopalakrishnan & S. Kim

Structural Design Systems for New Construction & Rehabilitation

A probabilistic approach to flexible aircraft pavement thickness determination
G.W. White

Comparison of design thickness between the 1993 AASHTO Guide and MEPDG for full depth reclamation pavement
Y. Ji & T.E. Nantung

Dynamic response of rigid pavements under moving traffic loads with variable velocities
Y. Zhong & L. Geng

Design of pavement rehabilitation to reduce the reflective cracking in pavements with cement stabilized bases
E. Padilla

Verification of mechanistic-empirical pavement design guide for the state of New Jersey
N. Siraj, Y.A. Mehta, K.M. Muriel & R.W. Sauber

Mechanistic evaluation of second generation preservation overlays
D.A. Morian, S. Sadasivam, S.M. Stoffels, G. Chehab & T. Kumar

A robust approach for the evaluation of airport pavement bearing capacity
Y.H. Lee, Y.B. Liu, J.D. Lin & H.W. Ker

Influence of unbound materials on flexible pavement performance: a comparison of the AASHTO and MEPDG methods
C.W. Schwartz
Bearing Capacity Designs for Challenging Conditions & Load Effects

20. The premature failure of slab pavements on heavily trafficked industrial sites
 C. Van Geem & O. De Myttenaere

46. The discussion on the “b” value of the axle load conversion in China
 X. Wang & L. Zhang

68. Load bearing analysis of EPS-block geofoam embankments
 D. Arellano & T.D. Stark

103. A review of the influence of chalk on pavement performance in the South East of England, UK
 M. Zohrabi

160. Design methodology based on strength and its application to full weathering granite used in highway subgrade
 Z. Li & C. Dong

183. Sustainable reconstruction of highways with in-situ reclamation of materials stabilized for heavier loads
 H. Wen & T.B. Edil

198. Estimating bearing capacity for opportune landing sites
 R. Affleck, L. Barna, S. Shoop & C. Ryerson

252. Shear strength properties of naturally occurring bituminous sands
 J. Anochie-Boateng & E. Tutumluer

263. Effects of bearing capacity and load transfer efficiency of jointed concrete pavements on reflective cracking in hot-mix asphalt overlays
 J. Baek & I.L. Al-Qadi

Bearing Capacity Designs for Climatic Conditions

26. Use of Ground Penetrating Radar for detection of salt concentration on Norwegian winter roads
 A. Lalagüe, I. Hoff, E. Eide & A. Svanekil

36. Seasonal coefficients for the pavement roads in Polish climate conditions
 M. Graczyk
40. Seal courses for a soft asphalt pavement with semi-rigid base in cold regions
X. Wang, X. Zhang & Y. Tan

58. Thermal stress analysis in ultra-thin whitetopping pavement
J.R. Roesler & D. Wang

67. Effect of a changed climate on gravel roads
P.O. Aursand & I. Horvli

247. Water impact on the structural behavior of a pavement structure
S. Erlingsson

Reinforcement of Structural Layers

21. Investigation of the effect of a polypropylene fiber material on the shear strength and CBR characteristics of high plasticity Ankara clay
M. Mollamahmutoglu & Y. Yilmaz

33. Evaluation of geogrid displacement on subbase reinforcement using specially designed pullout test
M.V. Akpinar & T. Sert

38. Performance of flexible pavements reinforced with steel fabric
S.F. Said, H. Carlsson & H. Hakim

41. Evaluation of asphalt road pavement rehabilitation using steel mesh reinforcement
J.M.C. Neves & A.R.D. Alves

107. In-situ strain measurement during dynamic shear loading of an unbound geogrid reinforced pavement section
B.R. Cox, B. Curry, C.M. Wood, C. Young & J.S. McCartney

176. Experimental study on bearing capacity of geocell-reinforced bases
S.K. Pokharel, J. Han, R.L. Parsons, Y. Qian, D. Leshchinsky & I. Halahmi

Utilization of Recycled Materials

94. The influence of virgin aggregate content on the strength and modulus of cold in place reclaimed asphalt pavement
H. Wang, P. Hao & K. Zhang

130. Unbound crushed concrete in high volume roads – evaluation of
field behavior and structural performance
J. Aurstad, J.E. Dahlhaug & G. Berntsen

265 Expansive characteristics of RAP materials for use as aggregates in the pavement substructure layers
D. Deniz, E. Tutumluer & J.S. Popovics

269 Study on fully and highly efficiently recycling of waste concrete
L. Lu, Y. He & S. Hu

Railroad Track Structures

22 Evaluation of roadbed stiffness on bearing capacity of railroad ballast with discontinuous analysis
T. Ishikawa, T. Kamei, E. Sekine & Y. Ohnishi

23 Pressure measurements and structural performance of hot mixed asphalt railway trackbeds
L.S. Bryson & J.G. Rose

44 Emerging trends for high-speed rail track superstructures – ballastless track as an alternative to the ballasted track
A.M. Paixão, E.C. Fortunato & M.L. Antunes

48 An innovative slab track test-line in China
J. Ren, R. Xiang & B. Lechner

91 Performance improvement of railroads over soft subgrades with geocell reinforcement
S. Saride, A.J. Puppala, S. Pradhan & T.G. Sitharam

124 Actions on railway track panel and ballast - behavior of the Hellenic limestone ballast
K. Giannakos & A. Loizos

161 Reducing track faults using polymer geocomposite technology
P.K. Woodward, G. Medero & D.V. Griffiths

162 Ballast evaluation and hot mix asphalt performance
H.M. Lees

192 Effects of incorporating a bituminous subballast layer on the deformation of railway trackbeds
T. Ferreira, P.F. Teixeira & R. Cardoso
211_Influence of the stiffness-damping coupling of the foundation in the performance of a high-speed train track
J. Cunha & A. Gomes Correia

212_Measurement of vibrations induced by high-speed trains

230_The use of biaxial geogrids for enhancing the performance of sub-ballast and ballast layers – previous experience and research
J. Kwon & J. Penman

248_Comparison of in situ performance-based tests methods to evaluate moduli of railway embankments
A. Gomes Correia, J. Martins, L. Caldeira, E. Maranha das Neves & J. Delgado

249_Railway bridge transition case study
J.P. Hyslip, D. Li & C.R. McDaniel

264_Comparison of coal dust fouled railroad ballast behavior – granite vs. limestone
W. Dombrow, H. Huang & E. Tutumluer

Full-Scale Testing

16_Validaton of NCAT structural test track experiment using INDOT APT facility
E. Levenberg

32_Construction and field performance of hot mix asphalt with moderate and high RAP contents
R. West, N. Tran, A. Kvasnak, B. Powell & P. Turner

39_Analysis of in-pavement sensor data for CC2 new rigid test items at the FAA National Airport Pavement Test Facility
D.R. Brill & E.H. Guo

54_Using the viscoelasticity and continuum damage theories to quantify the effects of loading speed in accelerated pavement testing results
K.M. Theisen, D.R. Victorino, W.P. Nunez & J.A.P. Ceratti

62_Full-scale aircraft tire pressure tests
C.Fabre, J. Balay, P.Lerat & A. Mazars

88_Comparison of precast and cast-in-place concrete pavements responses under heavy vehicle simulator loads
E. Kohler, J. Harvey, L. du Plessis & L. Motumah

89_Field testing of concrete pavements at Chicago O’Hare International Airport
Y.-S. Liu & D. Lange

141_Unbonded concrete overlay movements in response to gear loads
D. A. Morian, S. Sadasivam, J. Reiter, S. M. Stoffels, L. Yeh & A. Ioannides

Case Histories

5_Idaho Airport saves time and money with full-depth reclamation
G.E. Halsted

70_Mitigating unbound roadway rutting caused by groundwater movement
V. Diyaljee

97_Use of bitumen emulsion in urban paving
C.R. de Carvalho Filho, F.P. Cavalcante, C. de Medeiros Brito Cavalcante, J.A. Gonçalves de Macêdo & I.D da Silva Pontes Filho

132_A case study: quantification and modeling of asphalt overlay delamination on an airport pavement
E. Horak, J.W. Maina & S.E. Emery

146_Taxiway embankment over soft ground using staged construction
R. Wells, X. Barrett & T. Wells

157_Evaluation of runway bearing capacity: in-situ measurements and laboratory tests
A. Graziani, F. Cardone, E. Santagata & S. Barbati

235_Lessons learned during regular monitoring of in situ pavement bearing capacity conditions
P. Paige-Green
Preface

This conference is the eighth conference in the series started in Trondheim, Norway in 1982 and arranged at four-year intervals under the title “Bearing Capacity of Roads and Airfields – BCRA.” In the sixth BCRA Conference in Lisbon, Portugal, a third component on railway track was added in the scope as a vital element of transportation infrastructure worldwide. However, since then the acronym BCRA remained the same. For the first time, this eighth conference uses the acronym BCR²A to emphasize the infrastructure problems that all three transportation modes have in dealing with the bearing capacity challenges of highway and airfield pavements and railroad track structures.

The 8th International BCR²A’09 Conference focuses on issues pertaining to the bearing capacity of highway and airfield pavements and railroad track structures and aims to promote efficient design, construction and maintenance of the transportation infrastructure. Bearing capacity issues are steadily changing because of the ever-increasing traffic volumes and weights, which require stronger and more durable pavements, railroad track structures and superstructures. New materials and methods are being developed and new aspects of design and material utilization are brought into focus, which demand a better transition into implementing mechanistic concepts in designing pavements and railroad track structures. The BCR²A’09 conference will provide such a forum for new concepts and innovative solutions.

This proceedings book includes submissions to the conference in the areas of subgrade soils, granular materials, asphalt mixtures, in-situ measurement techniques and developments, modeling and methods of functional testing, backcalculation analyses of deflection measurements, new and/or innovative techniques in compaction and construction, structural evaluation and performance prediction, structural design systems for new construction and rehabilitation, bearing capacity designs for challenging conditions and load effects, bearing capacity designs for climatic conditions, reinforcement of structural layers, utilization of recycled materials, railroad track structures, full-scale testing, and case histories of roads, railways, and airfields. At least two, but often three reviewers, including members of the Scientific Committee, subjected all submitted contributions to an exhaustive refereed peer review procedure. Based on the reviewers’ recommendations, those contributions which best suited the conference goals and objectives were chosen for inclusion in the proceedings.

This international conference is coming to the United States for the second time; the first being the successful 1994 conference held in Minnesota. Taking this into consideration, the University of Illinois at Urbana-Champaign (UIUC) was in a unique position to host this conference. Illinois is at the crossroads of the U.S. transportation network and the highly ranked Civil and Environmental Engineering Department at UIUC along with its prominent transportation centers and programs have a long-standing reputation of cutting edge research on transportation infrastructure.

The UIUC Newmark Civil Engineering Laboratory houses the Center of Excellence for Airport Pavement Technology (CEAT) and the Association of American Railroads’ Affiliated Research
Laboratory. The Advanced Transportation Research and Engineering Laboratory (ATREL), in Rantoul, Illinois, houses the Illinois Center for Transportation (ICT), one of the largest centers in the UIUC College of Engineering. These centers and laboratories are the highlighted sites for technical tours during the BCR2A’09 Conference with a post conference visit to the Chicago O’Hare International Airport. During the BCR2A’09 event, four half-day pre-conference workshops have also been organized on climatic effects on pavement infrastructure, pavement interlayer systems, railroad track design including asphalt trackbeds, and designs for new and rehabilitated airport pavements.

The Editors would like to thank the Scientific Committee members and individual reviewers for their dedication and contributions of their time and efforts to ensure the high technical quality of the accepted papers. In addition, sincere thanks are extended to Ms. Elaine Wolf for collecting abstracts and Ms. Sinem Ertunga Tutumluer for ensuring that final manuscripts were in accordance with the publication format requirements. The guidance and continuing input from the International Advisory Committee members were essential in planning of this conference, and highly appreciated. Finally, we would like to gratefully acknowledge the Organizing Committee members for their help, suggestions and contributions to the management of the Conference affairs; especially Chris Barkan, Bill Buttlar, Riley Edwards, Dave Lange, Dave Lippert, and Jeff Roesler.

Erol Tutumluer
Imad L. Al-Qadi

Urbana, Illinois, June 2009
Organization

Chairmen
Erol Tutumluer, Chairman
Imad L. Al-Qadi, Co-chairman

International Advisory Committee
Leif Bakløkk, Chairman
Norwegian Public Roads Administration, Norway
Erol Tutumluer, Co-chairman
University of Illinois at Urbana-Champaign, USA

David R. Brill, Federal Aviation Administration, USA
David D. Davis, Association of American Railroads, USA
Guy Doré, Laval University, Canada
Magdy El-Sibaie, Federal Railroad Administration, USA
Brian Ferne, Transport Research Laboratory (TRL), United Kingdom
Ralph Fischer, Deutsche Bahn AG - DB Systemtechnik, Germany
Mahmoud H. Fraha, Canadian Civil Aviation, Transport Canada, Canada
Rita Moura Fortes, Mackenzie Presbyterian University, Brazil
Antonio Gomes Correia, University of Minho/DEC, Portugal
Øyvind Hallquist, Avinor A/S, Norway
Ivar Horvli, ViaNova, Norway
Takemi Inoue, Research Institute, NIPPON HODO, Japan
Geoff Jameson, ARRB Transport Research Ltd., Australia
Hans Jørgen Ertmann Larsen, Danish Road Directorate, Denmark
Andreas Loizos, National Technical University of Athens, Greece
Rafael Alvarez Loranca, Jefe de Area de Gestion de Infraestructuras Geocisa, Spain
Jens Melsom, Norwegian National Rail Administration, Norway
Helge Mork, Norwegian University of Science and Technology, Norway
Jean Michel Piau, Laboratorie Central des Ponts et Chaussées, France
Cheryl A. Richter, Federal Highway Administration, USA
Tom Scarpas, Delft University of Technology, The Netherlands
Ramesh Sinhal, Highways Agency, United Kingdom
Dariusz Sybilski, Road and Bridge Research Institute, Poland
Xinglong Wang, Heilongjiang Institute of Highway and Transport Research, P.R. China
Scientific Committee

Erol Tutumluer, Chairman
Imad L. Al-Qadi, Co-chairman

Leif Bakløkk, Norwegian Public Roads Administration, Norway
David Brill, Federal Aviation Administration, USA
Neeraj Buch, Michigan State University, USA
William G. Buttler, University of Illinois, USA
Samuel H. Carpenter, University of Illinois, USA
Halil Ceylan, Iowa State University, USA
Ghassan Chehab, Penn State University, USA
David Davis, Association of American Railroads, USA
Andrew Dawson, University of Nottingham, UK
Herve Di Benedetto, ENTPE, France
Tuncer Edil, University of Wisconsin - Madison, USA
Hans Jørgen Ertmann Larsen, Danish Road Directorate, Denmark
Paul Fleming, University of Loughborough, UK
Antonio Gomes Correia, University of Minho, Portugal
Edward Guo, SRA International, Inc., USA
Øyvind Hallquist, Avinor, Norway
Ivar Horvli, ViaNova, Norway
James Hyslip, Hyground Engineering, USA
Buddhima Indraratna, University of Wollongong, Australia
Tatsuya Ishikawa, Hokkaido University, Japan
Geoff Jameson, Australian Road Research Board, Australia
David A. Lange, University of Illinois, USA
Dingqing Li, Association of American Railroads, USA
David L. Lippert, Illinois Department of Transportation, USA
Andreas Loizos, National Technical University of Athens, Greece
Byron Lord, Federal Highway Administration, USA
Robert Lytton, Texas A&M University, USA
Eyad Masad, Texas A&M University, USA
Jens Melsom, Norwegian National Rail Administration, Norway
Andre Molenaar, Delft University of Technology, The Netherlands
Helge Mork, Norwegian University of Science and Technology, Norway
Soheil Nazarian, University of Texas at El Paso, USA
Anand Puppala, University of Texas at Arlington, USA
Jeffery R. Roesler, University of Illinois, USA
Jerry Rose, University of Kentucky, USA
Charles Schwartz, University of Maryland, USA
Mark B. Snyder, Mark B. Snyder Engineering, USA
Shiraz Tayabji, Fugro Consultants, Inc., USA
Marshall R. Thompson, University of Illinois, USA
Richard Thuma, Crawford, Murphy & Tilly, Inc., USA
Per Ullidtz, Dynatest, Denmark
David White, Iowa State University, USA
Organizing Committee

Erol Tutumluer, Chairman
University of Illinois at Urbana-Champaign

Imad L. Al-Qadi, Co-chairman and Highway Area Coordinator
Director of Illinois Center for Transportation (ICT), University of Illinois at Urbana-Champaign

Christopher P.L. Barkan, Railroad Area Coordinator
Director of Association of American Railroads (AAR) Affiliated Research Laboratory,
University of Illinois at Urbana-Champaign

David A. Lange, Airfield Area Coordinator
Director of Center of Excellence for Airport Technology (CEAT),
University of Illinois at Urbana-Champaign

William G. Buttlar
University of Illinois at Urbana-Champaign

Riley Edwards
University of Illinois at Urbana-Champaign

David L. Lippert
Illinois Department of Transportation

Jeffery R. Roesler
University of Illinois at Urbana-Champaign

Marshall R. Thompson
University of Illinois at Urbana-Champaign

Richard Thuma
Crawford, Murphy & Tilly, Inc.

Elaine E. Wolff
University of Illinois at Urbana-Champaign
Internationally, much attention is given to bearing capacity challenges of highway and airfield pavements and railroad track structures. The Eighth International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCR²A’09), held in Champaign, Illinois on June 29-July 2, 2009, focused on issues pertaining to the bearing capacity of highway and airfield pavements and railroad track structures and provided a forum to promote efficient design, construction and maintenance of the transportation infrastructure. This book is a collection of papers from the Conference, and includes contributions on a variety of topics:

- Subgrade Soils
- Granular Materials
- Asphalt Mixtures
- In-situ Measurement Techniques & Developments
- Modeling & Methods of Functional Testing
- Backcalculation Analyses of Deflection Measurements
- New and/or Innovative Techniques in Compaction & Construction
- Structural Evaluation & Performance Prediction
- Structural Design Systems for New Construction & Rehabilitation
- Bearing Capacity Designs for Challenging Conditions & Load Effects
- Bearing Capacity Designs for Climatic Conditions
- Reinforcement of Structural Layers
- Utilization of Recycled Materials
- Railroad Track Structures
- Full-Scale Testing
- Case Histories

Bearing Capacity of Roads, Railways and Airfields is particularly of interest to academics, researchers, and practitioners involved in geotechnical, pavement and railroad engineering disciplines and concerned with the many issues pertaining to the bearing capacity and mechanistic based design of highway and airfield pavements and railroad track structures.